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Abstract

The growing need for more defined images of seismic
attributes for analysis and description of reservoirs
encourages the development of new methods that are
capable of displaying high resolution images of seismic
attributes. Therewith, we propose the use of the method
called Maximum Entropy of Wigner-Ville (MEM-WV), that
combines the distribution of Wigner-Ville with the Burg’s
Maximum Entropy method, in order to get the high
resolution power spectrum of the seismic signal. In this
method, the power spectrum is obtained by doing Fourier
Transform (FT) of each Kernel term of Wigner-Ville, and
then by estimating and extending each Kernel sequence. In
order to better describe hydrocarbon reservoirs, this work
will favor the achievement of structural, stratigraphic and
geomorphological attributes with higher resolution.

Introduction

The subject titled Time-Frequency Analysis (TFA, T-F), or
Time / Scale-Frequency Analysis (TSFA) usually combines
principles of signal analysis with those of differential
equations. This means that the harmonic analysis is
described in the time-space domain and in the associated
spectral content. Thus, the different techniques retain a
direct relationship with the Fourier transform to decompose
and represent a function (Leite, 2015).
Techniques for decomposing a signal in time and frequency
can be found in many areas of science, including the
analysis of the volatility and the correlation of financial rates
(Pimentel and da Silva, 2011), the analysis of disturbances
in electrical networks (Soares, 2013). In seismic studies,
the list related to T-F Analysis is long and constantly
evolving.
In this work, we use the maximum entropy method
of Burg (1967) to estimate the spectrum of the data
with high resolution, avoiding the crossed terms. This
method is based on the estimation of a linear predictive
operator and on the estimation and extension of the
autocorrelation function, called (Zoukaneri and Porsani,
2015) maximum entropy of Wigner-Ville method (MEM-
WV). After generating the unknown coefficients of the
self-correlation, the Kernel terms of the Wigner-Ville
Maximum Entropy can be generated, which, once applied
to the Fourier Transform, generate the maximum entropy
spectrum.

In the last step, we extracted the mean instantaneous
frequency, mean variance, and Skewness and Kurtosis
attributes of the WV-MEM, which were essential for the
characterization of reservoirs based on seismic attributes.

Theory

For an uniformly sampled signal z(t) with ∆ t interval, the
discrete Wigner-Ville can be represented as follows:

W (t, f ) = 2
N−1

∑
k=0

z(t− k)z∗ (t + k)e(−2 jπ f k) (1)

where z(n) is the analytical signal corresponding to x(n) and
represented by:

z(n) = x(n)+ jH [x(n)] (2)

where H [x(n)] represents the Hilbert transform of the signal
x(n),n = 0, ...,Ns− 1, and Ns, the number of samples. The
covariance matrix associated to the analytic signal can be
represented by:

C = zz∗ (3)

Where ” * ” represents the conjugate transpose of the
matrix. The Kernel of the Wigner-Ville distribution is
represented by the set of sequences of terms along the
secondary diagonals of the associated covariance matrix,
represented by:

K(n) = {kn(−l), ...,kn(0), ...,kn(l)} (4)

where each term in equation 4 is:

z(n− l)z∗(n+ l), |l| ≤ min{n,Ns−n}
0, |l| ≤ min{n,Ns−n}

The central term kn(0) = z(n)z∗(n) is associated with the
sample z(n).
To facilitate the understanding of equation 1, the Figure 1
represents a graphic illustration of discrete Wigner-Ville.
The covariance matrix is formed by z and z∗, the kernel
sequences are represented by the blue lines, and the kn(.)
terms, by black circles.
The power spectrum corresponding to the Fourier
transform of the Kernel K(n) of Wigner-Ville can also
be seen in Figure 1 and can be analyzed by means of
the instantaneous power spectrum of the signal z(n) and
represented as:

P(n) =W (n) =
{

wn(−
N−1

2
), ...,wn(0), ...,wn(

N−1
2

)

}
, (5)

where each coefficient is given by:

w(m) =
1
N

(N−1)/2

∑
l=−(N−1)/2

kn(l)W ml
4 (6)
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Figure 1: Modified image from Zoukaneri (2014).
Schematic discrete distribution of Wigner-Ville. The blue
diagonals represent the Kernel K(n) sequences. The red
arrow represents the sum of the autocorrelation terms.
The image of the instantaneous power spectrum P(t, f ) is
generated by Fourier transforming the kernel sequences.

N is the number of terms used in the Discrete Fourier
Transform except that the so called twiddle factor is
normally defined as W2 = exp[− j2π/N]. The additional
power of 2 represents a scaling of the frequency axis by
a factor of 2. Equation 6 can be evaluated efficiently
using the standard fast Fourier transform (FFT) algorithms
(Zoukaneri and Porsani, 2015).

Maximum Entropy Method

Usually the power spectrum is estimated using the Short
Window Fourier Transform (SWFT) of the autocorrelation
coefficients (ACC). However, the leakage effect when the
data is truncated makes the Fourier transform limited.
To obtain good resolution from a limited series of data,
Burg (1995) formulated the Maximum Entropy Method,
constituting a linear predictive filter, which gives the
maximum quadratic error between the data and the
predicted value of the data. Marple (1978) presents the
entropy of a Gaussian process proportional to:∫ fn

− fn

logP( f )d f (7)

where P( f ) is the power spectrum, and fN is the Nyquist
frequency. Burg maximizes the entropy with the following
condition:

Rn =
∫ fN

− fN

P( f )e(i2π f n∆t)d f (8)

where Rn is self covariance, −N < n < N. With the help
of Lagrange coefficients, we can obtain the solution λk k =
1, ...,N, such that:

∂

∂P( f ))

(∫ fn

− fn

logP( f )d f −λk

(
M

∑
−M

∫ fN

− fN

P( f )e(i2π f n∆t)d f

))
= 0

(9)
The solution of equation 9 is given by:

P( f ) =
ENc ∆t∣∣∣∑Nc−1

n=0 cne− j2π f n∆t
∣∣∣2 , (10)

where P( f ) is the power spectrum, cn, n = 0, ...,Nc − 1,
(c0 = 1), represents the coefficients of the prediction error
operator (PEO) of order Nc, and Ec is the corresponding
energy of the error. f is limited by the range of Nyquist
−1/(2∆t)6 f 6 1/(2∆t).
The basic form of the maximum entropy method is given
by the 10 equation. Thus, the power spectrum P(t) is
completely defined if the coefficients cn and energy ENc

are known. Among the methods used to determine the
coefficients of the PEO of order Nc and the corresponding
energy ENc , the most used are the Yulle-Walker equation
and the Burg algorithm, which was used in this work.

Solution of the Maximum Entropy equation via Burg
equation

This method, originally proposed by Burg (1967) as a
maximum entropy algorithm, was later interpreted as a
restrictive least squares minimization algorithm. Estimates
of the model parameters cn are obtained by minimizing, for
each model of order Nc, the arithmetic mean of the power of
direct and reverse linear predictive errors, with the limitation
that the parameters cn satisfy Levinson’s recursion:

c j,i = c j−1,i + c j,ic j−1, j−1 (11)

This limitation is made to ensure stability of the Kay and
Marple operator (1981).
Considering a signal xn,n = 1, ...,N and some coefficients
ci, i = 1, ...,k, the direct and reverse linear prediction yn and
Zn of the original signal Xn can be obtained, respectively,
by:

yn =−
k

∑
i=1

cixn−1 (12)

and

zn =−
k

∑
i=1

cixn+1 (13)

where ci i = 1, ...,k is the prediction operator coefficient
of order K, yn is the linear combination of the previously
known weighted coefficients (direct prediction), and zn
is the weighted linear combination of the next known
coefficients (reverse prediction) (Zoukaneri, 2014).
Burg (1967) proposes to minimize simultaneously the sum
of squared errors of direct and reverse prediction subjected
to a constraint.
By calling Fk the direct prediction error and Bk the reverse
prediction error, we have:

Fk =
N

∑
n=1

(xn− yn)
2 =

N

∑
n=1

(xn− (−
k

∑
i=1

cixn−1))
2 (14)
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and

Bk =
N

∑
n=1

(xn− zn)
2 =

N

∑
n=1

(xn− (−
k

∑
i=1

cixn+1))
2 (15)

Equation 11 can be rewritten as:

cn+1 = cn +µck+1−n, (16)

where µ = c j, j, n = 1, ...,k, and k is the number of
coefficients. For c0 = 1, equation 14 can be rewritten as:

Fk =
N

∑
n=1

(c0xn +
k

∑
i=1

cixn−1)
2 =

N

∑
n=1

( fk(n))
2 (17)

where

fk(n) =
k

∑
i=0

cixn−1 (18)

According to this, we can rewrite equation 15 in the same
way:

Bk =
N

∑
n=1

(c0xn +
k

∑
i=1

cixn+1)
2 =

N

∑
n=1

(bk(n))
2 (19)

and

bk(n) =
k

∑
i=0

cixn+1 (20)

Therefore, we can obtain:

Fk+1 +Bk+1 =
N

∑
n=1

( fk+1(n))
2 +

N

∑
n=1

(bk+1(n))
2 (21)

Using the equations 16, 18, and 20, we can derive:

fk+1(n) = fk(n)+µbk(n− k−1) (22)

bk+1(n) = bk(n)+µ fk(n+ k+1) (23)
Using 22 and 23 in 21 and minimizing with respect to µ, we
have:

µ =
−2∑

N−k−1
n=0 fk(n+ k+1)bk(n)

∑
N
n=0 fk(n)2 +∑

N
n=0 bk(n)2

(24)

where the Burg algorithm is summarized by:{
∂ ( fk+1+bk+1)

∂ µ
= 0,

cn+1 = cn +µck+1−n.
(25)

It is possible to estimate the coefficients c j,i of the
prediction error operator from the discrete signal using the
Burg algorithm. This algorithm does not impose zeros
outside the window, does not require previous coefficients
of the autocorrelation function (ACF), and produces a
minimum phase operator (Ulrych and Bishop, 1975),
(Ulrych and Clayton, 1976), (Marple, 1978), (Barrodale and
Erickson, 1980), Porsani (1986), (Zoukaneri, 2014)
In addition to the method for estimating PEO coefficients,
Burg established the relationship for predicting the
coefficients of autocorrelation with known coefficients c j,i.
We have:

rz( j) =−
j−1

∑
i=1

rz( j− i)c( j−1, i)− c( j, j)E j−1 (26)

The equation 26 guarantees the recursive obtaining of
the AC coefficients associated to the maximum entropy
spectrum. The Burg method allows to estimate directly j
coefficients of the autocorrelation, while in the Yule-Walker
method is necessary to know previously the coefficients
of autocorrelation to estimate the PEO (Zoukaneri and
Porsani, 2015).

Maximum entropy method applied to WVD

The Burg method mentioned above is used to compute the
PEO and then using the PEO coefficients to compute and
extend the power spectrum of each Wigner-Ville Kernel
sequence K(n),n = 0, ...,Ns−1.
Each sequence K(n) can be associated with an analytic
signal z̃(n) whose boundaries are associated with window
size L.

z̃(n) =
{

z(n− L
2
), ...,z(n), ...,z(n+

L
2
)

}
(27)

The window size L and the number of filter coefficients
Nc control the resolution of the decomposition in the FT
plane. L is an odd number related to an odd symmetric time
window centered on Z(n). We can then write the sequence
of the autocorrelation coefficients related to the signal z̃(n)
as:

K̃(n) =
{

k(n− L
2
), ...,k(n), ...,k(n+

L
2
)

}
(28)

The coefficients of the autocorrelation function ACF
associated to the maximum entropy spectrum can be
obtained using the Burg algorithm. The coefficients are
extended as:

k̃n( j) =−
j−1

∑
i=1

k̃n( j−1)c( j−1, i)− c( j, j)E j−1 (29)

By making the Fourier transform of 29, we can obtain the
instantaneous power of the Wigner-Ville distribution. By
sliding the window and repeating the process for all kernel
sequences, the time-frequency representation of Wigner-
Ville maximum entropy is obtained without the influence of
the crossed terms.

Extraction of instant attributes from WV-MEM

Average instantaneous frequency

According to Boashash (1992), the average instantaneous
frequency can be obtained by computing the first moment
of the Wigner-ville distribution, expressed as:

f̂ (t) =
∫+∞

−∞
fW (t, f )d f∫+∞

−∞
W (t, f )d f

(30)

where f̂ is the instantaneous average frequency, f is the
frequency, W ( f , t) is the Wigner-Ville distribution obtained
with WV-MEM, and

∫+∞

−∞
W (t, f )d f corresponds to the time-

boundary condition of the Wigner-Ville distribution.
The frequency calculated using the first moment of the
MEM-WV is robust, which is why the presence of noise
causes low interference to the results (Fomel and Backus,
2003). The robustness evaluation is solved in Zoukaneri
(2014).

Variance

The second moment of MEM-WV is related to the local
deviation of the frequencies with respect to the average
frequency. This deviation is called bandwidth and / or
variance, according to Barnes (1993), and is given by:

σ
2(t) =

∫+∞

−∞
( f − f̂ (t))2W (t, f )d f∫+∞

−∞
W (t, f )d f

(31)
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Skewness

The Skewness attribute is related to the third moment
of WV-MEM. This attribute describes the deviation of the
density function with respect to the normal:

S(t) =
∫+∞

−∞
( f − f̂ (t))3W (t, f )d f

σ3(t)
∫+∞

−∞
W (t, f )d f

(32)

Kurtosis

The Kurtosis attribute is related to the fourth moment of
WV-MEM and reflects how close the distribution is to a
delta. It is given by:

K(t) =

∫+∞

−∞
( f − f̂ (t))4W (t, f )d f

σ4(t)
∫+∞

−∞
W (t, f )d f

−3 (33)

According to Steeghs and Drijkoningen (2001), the term -3
causes K(t) to assume zero value for the case of normal
distribution.

Results

The WV-MEM method and its relation to the window size L
and the PEO operator order

In the previously reported information, the method
resolution (WV-MEM) is controlled by the window size L
and the number of coefficients Nc of the PEO operator.
Now, we will understand how the resolution is conditioned
by the effect of the operator order and the size of the
window.

Wigner-Ville method and the effect of the window size L

It is possible to observe the effect of window size in Figure
2, that shows a synthetic time-frequency seismic trace
using the Wigner-Ville method for different window sizes
L. Through a thorough observation, it can be concluded
that large windows make the surface of the energy smooth
while small windows allow the observation of small details.
Of course, to characterize the stratigraphy, we should use
short size windows. This is contrary to what is observed
in traditional methods such as the short-window Fourier
Transform (SWFT), where a larger window is needed to
achieve a frequency resolution. The explanation is that
the SWFT method aims to solve a non-stationary problem
based on the window size, and on the proposed approach;
besides, it becomes the non-stationary problem in small
stationary problems. In this way, the short window is
necessary to achieve better solution. Each short window is
characterized by its center frequency (average), such that,
in MEM-WV, only the center frequency and its associated
energy for each window considered (Zoukaneri, 2014) are
represented.

Wigner-Ville method and the PEO effect

It is possible to observe how the order of the PEO operator
in Figure 3 influences the time-frequency spectrum.
However, it is clear that the operator of the order Nc = 1
is sufficient. According to Zoukaneri (2014), the operator
of order Nc = 1 corresponds to a PEO of single reflection
coefficient (1,c1,1) and can be associated with the single
wave plane propagating indefinitely with center frequency
equal to the average frequency of the wave. In this way,
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Figure 2: (A) Sinusoidal signal and the corresponding
envelope (B) Time-frequency decomposition using window
equal to 5, (c) DTF using window equal to 15 and (d) using
window equal to 25

the WV-MEM spectrum with Nc = 1 represents the energy
distribution around the instantaneous average frequency.
Similarly, the operator of order Nc = 3 (1,c1,1,c1,2) is
associated with two wave planes, where each wave plane
in the Wigner- Ville spectrum is represented by the energy
distribution around the mean frequency corresponding to
the wave plane.
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Figure 3: (A) Sine signal and the corresponding envelope,
(b) Time-frequency decomposition using Nc = 2 (c) DTF
using Nc = 3 (d) used Nc = 4

According to Zoukaneri (2014), the choice of the order is of
great importance to identify the components that a signal
carries, especially for multicomponent signals and in noise
environments. The best choice for the order of the model
Nc is not usually known at the beginning, so it is necessary
to perform experiments with several orders. Two of these
criteria are the final prediction error (FPE) described by
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Akaike (1969) and the maximum likelihood approach (AIC).
However, for applications in geophysics, where it is desired
to analyze the energy variation of the signal, an operator of
order Nc = 1 is sufficient.
Another transparent observation in the Figure 3, which
justifies the used method, concerns the instantaneous
average frequency curve. Note that for different values
of Nc the instantaneous average frequency curve remains
constant, affirming the robustness of the method in noisy
environments.

Extraction of Attributes and Characterization of Reservoirs
in Real Data

Most of the extracted attributes were obtained using
the WV-MEM spectrum in post-stacked data. As a
geomorphological attribute, we have the instantaneous
average frequency presented in Figure 5, extracted from
the Figure 4. The vertical resolution of the spectral
section is observed due to the solution of the WV-MEM
method. Thus, it is possible to observe a decrease
in the frequencies as the depth increases and more
important regions of low frequencies indicating a probable
accumulation of hydrocarbons in the time of seven seconds
for the CMPs 300 and 600.
One of the direct indicators of hydrocarbons is the
low frequency anomaly, since low frequency energy is
highlighted below the reservoirs. Spectral decomposition
has been used to study the energy variation with frequency
in the data.
Figure 6 refers to the variant attribute and corresponds
to local deviation and frequency with respect to average
frequency. Note that this attribute also reaffirms the
reservoir for CMPs 300 and 600 in the time of seven
seconds.
For the same CMPs and time, the attributes Skewness,
Figure 7, and Kuttosis, Figure 8, guarantee information
related to the reservoirs. Note in Figure 7 that the region of
the possible reservoir in the Skewness attribute has a high
degree of asymmetry. Figure 8 corresponds to the Kurtosis
seismic attribute. Observe that the attribute is efficient in
the identification of the reservoir, once it reflects the pulse
distortion due to the presence of fluid in the region (note
lower values when compared to the host medium).
Another interesting attribute is the energy of the Prediction
Error, Figure 9, which represents how close the calculated
value is to the predicted data.

Conclusion

The Wigner-Ville maximum entropy distribution was
obtained using the Burg method to extend the Wigner-Ville
kernel sequences using the prediction error operator and
applying to each extended Kernel sequence the Fourier
transform.
The solution of the method is controlled by the operator
order Nc and the size of the window used to estimate the
prediction operator. The number of components of the
spectrum is directly related to the number of coefficients
of the predictive error operator. In the signal analysis, the
Nc = 2 proved to be satisfactory. Small window allows to
capture details of the data while a large window manifests
the soft spectrum.
From the WV-MEM spectrum, it was possible to obtain
the attributes instantaneous average frequency, mean
variance, Skewness and Kurtosis attributes with high

resolution for the characterization of reservoirs.
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Figure 4: Stacked opendtect seismic section,
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Figure 5: Attribute average instantaneous frequency, Nc=1
e L=7

0

0.3

0.6

0.9

1.2

1.5

1.8

T
im

e
(s
)

150 300 450 600
CMP

0 1000 2000 3000 4000 5000
Variance

Figure 6: Attribute mean variance, Nc=1 e L=7
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Figure 7: Seismic attribute Skewness, Nc=1 e L=7
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Figure 8: Seismic attribute Kurtosis, Nc=1 e L=7
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Figure 9: Seismic attribute energy prediction error., Nc=1 e
L=7
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